Friday, February 28, 2020

Particle Accelerator in New York To Probe Protons and Neutrons


For the first time in decades, the United States will have its first new particle collider. The Department of Energy announced earlier this year that the new location of this machine will be at Brookhaven National Laboratory in Upton, New York. The research will be done with the instrument to study the dynamic makeup of protons and neutrons. The new particle collider is a strong electron microscope that shoots electrons at protons and neutrons in order to measure them. The use of these accelerators shows great promise for the future in the fields of nuclear medicine as well as quantum information technologies. The design process will, however, not be finalized until 2024, and then it will take about another six years for construction and start up to occur. To read more on the new particle collider in this article, click here.

Wednesday, February 26, 2020

Types of Radiation Therapy

Radiation treatment continues to grow and change in order to improve the health and quality of life to cancer patients all around the world. With radiation therapy, high-energy particles or waves of energy are used to treat cancer by breaking up the DNA of cancer cells in a way that destroys their growth and division. Radiation can kill cancer cells or can decrease the rate at which cancer will spread. 

Goals of Radiation Therapy

A doctor may recommend radiation as a treatment option at different stages of a cancer diagnosis. When cancer is found in earlier stages, radiation therapy can help decrease the size of a tumor before a scheduled surgery or be used after surgery to kill any remaining cancerous cells. Radiation therapy can also be used in later stages of cancer and can be used as a solution for pain relief, or part of palliative care. When speaking of types of radiation therapy available, there are two main forms used for treatments both external and internal. Doctors will sometime prescribe radiation therapy to be combined with other cancer treatments such as chemotherapy, surgery, and others.

External Radiation Therapy

The most common type of radiation treatment involves an external source of equipment that delivers radiation from outside a patient’s body that is aimed at a targeted cancer site. Equipment used in external beam therapy include systems such as proton and neutron beam machines, orthovoltage x-ray, Cobalt-60 machines, and linear accelerators. The team of radiation oncologists will determine which method and system are best for treatment, depending on the location of cancer within the body. These systems can be used for patients who have several tumors of the head, neck, breast, lung, colon, and prostate. There are two levels of radiation when external radiation therapy is performed depending on the location of the tumor, low-energy and high-energy radiation. Low-energy radiation may be a better choice in treating surface tumors like skin cancer since it will not penetrate very deep into the body. High-energy radiation is used when patients require deeper penetration to reach cancerous cells hidden in the patient’s body. 

Internal Radiation Therapy

There are a few different types of internal radiation therapy available. One method is called Brachytherapy, which is described as placing radiation sources as close to the tumor site as possible. In some instances, it can be inserted directly inside the tumor. The implant may be temporary or permanent and is used in many cancers such as ones found in the cervix, uterus, vagina, rectum, eye, and in certain parts of the head and neck. Brachytherapy is separated into categories by the method in which radiation is placed on the body.
  • Interstitial Brachytherapy - involves placing radioactive needles or wires in the tumor area for a selected length of time, whether a day, a week or can remain in the patient’s body permanently.   
  • Intracavitary Brachytherapy - the placement of a metal or plastic radioactive source that is inserted into body cavities such as the vagina, uterus, or larynx to irradiate the cancerous walls within the cavity or the tissues nearby.
  • Intraluminal Radiation Therapy - delivers radiation to hollow organs. A surgeon or a radiation oncologist performs this method by inserting a specially designed tube in an opening such as the esophagus for cancer treatment.
  • Radioactively Tagged Molecules - radioactive particles are attached to small molecules and delivered intravenously.
As an independent LINAC service company, Acceletronics is dedicated to delivering the best equipment performance and services for linear accelerators and CT scanners across all major brands and models, as well as new and refurbished LINAC systems for sale. More information can be found online at  https://www.acceletronics.com/.

Thursday, February 13, 2020

One Step Closer to the World’s Strongest Particle Accelerator


A team of researchers called the Muon Ionization Cooling Experiment (MICE) collaboration had announced the success of completing a muon beam. In the past, particles made of protons, electrons, and ions have been accelerated in concentrated beams. This new particle called muons are particles much like electrons but with a larger mass, which gives them the ability to create beams with ten times more energy than the previous largest particle accelerator, the Hadron Collider. Muons can also be used in further research on the atomic structure of materials and can see through highly dense materials that X-Rays cannot penetrate. To learn more about muons and how they are produced and how the team MICE have been successful in the cooling methods for this new scientific breakthrough, read this article